On Identification of Bayesian DSGE Models
نویسندگان
چکیده
On Identification of Bayesian DSGE Models In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are T -consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models. JEL Classification: C11, C15, E17
منابع مشابه
The Anatomy of DSGE Models with Banking Industry for Iran's Economy
The recent financial crisis has raised several questions with respect to the financial institutions and banking industry. Hence, over the last decade the Iranian banking industry has undergone many substantial changes, such as liberalization, government regulation and technological advances. What impacts do these changes have on the policy instruments? We have answered this question in this stu...
متن کاملDoes the DSGE Model Fit the Chinese Economy? A Bayesian and Indirect Inference Approach by
This thesis makes three main contributions to the literature on Dynamic Stochastic General Equilibrium (DSGE) models in Macroeconomics. As no previous studies have studied the Chinese economy from the perspective of DSGE, the first contribution of this thesis is estimating a DSGE model for China through a Bayesian approach using the Chinese quarterly post-economic reform data representing the m...
متن کاملEstimating the Parameters of a Small Open Economy DSGE Model: Indentifiability and Inferential Validity
This paper estimates the parameters of a stylized dynamic stochastic general equilibrium model using maximum likelihood and Bayesian methods, paying special attention to the issue of weak parameter identification. Given the model and the available data, the posterior estimates of the weakly identified parameters are very sensitive to the choice of priors. We provide a set of tools to diagnose w...
متن کاملBayesian forecasting with small and medium scale factor-augmented vector autoregressive DSGE models
Advanced Bayesian methods are employed in estimating dynamic stochastic general equilibrium (DSGE) models. Although policymakers and practitioners are particularly interested in DSGE models, these are typically too stylized to be taken directly to the data and often yield weak prediction results. Hybrid models can deal with some of the DSGE model misspeci cations. Major advances in Bayesian est...
متن کاملSequential Monte Carlo samplers for Bayesian DSGE models
Bayesian estimation of DSGE models typically uses Markov chain Monte Carlo as importance sampling (IS) algorithms have a difficult time in high-dimensional spaces. I develop improved IS algorithms for DSGE models using recent advances in Monte Carlo methods known as sequential Monte Carlo samplers. Sequential Monte Carlo samplers are a generalization of particle filtering designed for full simu...
متن کامل